Data-driven signal detection and classification
نویسنده
چکیده
In many practical detection and classi cation problems, the signals of interest exhibit some uncertain nuisance parameters, such as the unknown delay and Doppler in radar. For optimal performance, the form of such parameters must be known and exploited as is done in the generalized likelihood ratio test (GLRT). In practice, the statistics required for designing the GLRT processors are not available a priori and must be estimated from limited training data. Such design is virtually impossible in general due to two major difculties: identifying the appropriate nuisance parameters, and estimating the corresponding GLRT statistics. We address this problem by using recent results that relate joint signal representations (JSRs), such as time-frequency and time-scale representations, to quadratic GLRT processors for a wide variety of nuisance parameters. We propose a general data-driven framework that: 1) identi es the appropriate nuisance parameters from an arbitrarily chosen nite set, and 2) estimates the second-order statistics that characterize the corresponding JSR-based GLRT processors.
منابع مشابه
Signal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملA Novel Fault Detection and Classification Approach in Transmission Lines Based on Statistical Patterns
Symmetrical nature of mean of electrical signals during normal operating conditions is used in the fault detection task for dependable, robust, and simple fault detector implementation is presented in this work. Every fourth cycle of the instantaneous current signal, the mean is computed and carried into the next cycle to discover nonlinearities in the signal. A fault detection task is complete...
متن کاملFault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملFault detection, classification and location methodology for solar microgrids using current injection, online phaselet transform, mathematical morphology filter and signal energy analysis
In this paper, a new method for detection and fault location and classification in MTDC solar microgrid is presented. Some issues such as expanding renewable energy sources and DC loads and efforts to increase power quality and reduce the environmental impact of electricity generation have led to the expansion of solar networks. Identifying the types and locations of faults is important to ensu...
متن کاملP81: Detection of Epileptic Seizures Using EEG Signal Processing
Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...
متن کامل